Spreading versus biomass production by colonies of the fish pathogen Flavobacterium psychrophilum: role of the nutrient concentration.
نویسندگان
چکیده
Colonies of the fish pathogen Flavobacterium psychrophilum have gliding motility in media with low agar concentrations. Although gliding motility, particularly in Flavobacterium johnsoniae, has been well-studied, little is known about its regulation by environmental factors. The work described here shows that the ability of F. psychrophilum to spread over surfaces depends on nutrient availability. In fact, as the nutrient contents of the medium decreased, spreading was favored and the diameter of the colonies increased. Macroscopy examination revealed modifications in colony morphology as nutrient depletion increased: from a dense and defined colony to the formation of microcolonies inside a general colony structure. Additionally, colony expansion dynamics and population density across the colony radius varied inversely with bacterial biomass production. Motility was an immediate response when bacteria were transferred from a rich to a more diluted medium. Our results suggest that, when nutrients are limiting, F. psychrophilum activates a specific growth mode that enables it to colonize surfaces by means of gliding motility. The use of diluted media allowed the differentiation, among previously isolated F. psychrophilum non-gliding mutants, of those completely unable to glide and those with only partially impaired gliding ability.
منابع مشابه
Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum.
Flavobacterium psychrophilum, a member of the Cytophaga-Flavobacterium-Bacteroides group, is an important pathogen of salmonid fish. Previous attempts to develop genetic techniques for this fastidious, psychrotrophic bacterium have met with failure. Here we describe the development of techniques for the genetic manipulation of F. psychrophilum and the identification of plasmids, selectable mark...
متن کاملGliding Motility and Expression of Motility-Related Genes in Spreading and Non-spreading Colonies of Flavobacterium columnare
Gliding motility facilitates the movement of bacteria along surfaces in many Bacteroidetes species and results in spreading colonies. The adhesins required for the gliding are secreted through a gliding motility-associated protein secretion system, known as the type IX secretion system (T9SS). The fish pathogen Flavobacterium columnare produces spreading (rhizoid [Rz], soft [S]) and non-spreadi...
متن کاملLack of a type-2 glycosyltransferase in the fish pathogen Flavobacterium psychrophilum determines pleiotropic changes and loss of virulence
Flavobacterium psychrophilum is an important fish pathogen, responsible for Cold Water Disease, with a significant economic impact on salmonid farms worldwide. In spite of this, little is known about the bacterial physiology and pathogenesis mechanisms, maybe because it is difficult to manipulate, being considered a fastidious microorganism. Mutants obtained using a Tn4351 transposon were scree...
متن کاملMore Than Gliding: Involvement of GldD and GldG in the Virulence of Flavobacterium psychrophilum
A fascinating characteristic of most members of the genus Flavobacterium is their ability to move over surfaces by gliding motility. Flavobacterium psychrophilum, an important pathogen of farmed salmonids worldwide, contains in its genome the 19 gld and spr genes shown to be required for gliding or spreading in Flavobacterium johnsoniae; however, their relative role in its lifestyle remains unk...
متن کاملInhibition of Flavobacterium psychrophilum biofilm formation using a biofilm of the antagonist Pseudomonas fluorescens FF48
The most important bacterial pathology currently occurring in Chilean freshwater salmon farming is the cold-water disease produced by the psychrotrophic bacteria Flavobacterium psychrophilum. The main aim of this study was to characterize the inhibitory activity of an antagonist strain on the formation of biofilms of a F. psychrophilum strain. The antagonistic strain Pseudomonas fluorescens FF4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International microbiology : the official journal of the Spanish Society for Microbiology
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2009